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Semicoherent states 

M Boiteux and A Levelut 
Laboratoire d’Ultrasonst, Universite Paris VI,  Tour 13, 11 quai Saint-Bernard, 75230 
Paris Cedex 05, France 

MS received 18 September 1972, in revised form 21 December 1972 

Abstract. We study the set la, n) = D(a) ln)  at fixed n where D(a) is the Glauber displacement 
operator for bosons. 

Specifically we demonstrate a closure relation and we use it for the description of 
operators in a generalized P representation. We apply these results to some equations of 
evolution which then appear in a near-classical form. 

1. Introduction 

The problem of the harmonic oscillator (HO) is one of the most fundamental in quantum 
mechanics. Its interest lies in the fact that it describes normal modes of bosons (photons, 
phonons, magnons, e tc . .  .) and because its eigenvectors can be used as a basis for more 
complicated problems. Those eigenvectors In), where the number of quanta in the state 
is given, constitute Dirac’s basis. 

The question of the HO displaced by an external macroscopic force is easily solved : 
the eigenvectors are of the form la, n)  = D(a)ln) with a given; D(a) is a displacement 
operator. The set of la, n) (a given) is complete and is a basis. 

An important step has been made by Glauber (1963a, b) when he gave a closure 
relation with the set la, 0) where a is a complex number. Moreover, the state la, 0) is an 
eigenvector of the annihilation operator a : 

ala, 0) = ala, 0). 

As a consequence, it factorizes correlation functions defining quantum coherence ; so, 
they are called coherent states. Another interesting property of the Ia,O) is that they 
minimize the product Ap . Aq. They behave as classically as possible. The price one 
must pay for that is their lack of orthogonality. 

In this paper we study the states la, n)  and their possible usefulness for the description 
of operators. 

In 5 2 we establish some properties of these states with given n and especially we show 
that they are an overcomplete basis, as for coherent states. But the property of factoriza- 
tion is lost; so they will be referred to as semicoherent states (scs). Next we give the 
representation of vectors and operators. 

In $ 3  we generalize the notation of a P representation particular to continuous 
representations. 

Finally, we give some applications to the derivation of equations of evolution. 

t Associated with the Centre National de la Recherche Scientifique. 
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2. Semicoherent states 

2.1. Dejnition and some properties 

Let us write D(r )  = exp(ra' -%*a) the unitary translation operator introduced by 
Glauber. We define the scs of order n by : 

IQ, n )  = D(a)ln>. ( 1 . 1 )  

Because of the properties of the states In) and of the operators a, at ,  we have 

a +  a+ 
,+/n + 1 n + l  

( a ,  n+ 1) = D ( a ) ( n +  1) = D(a)=-In) = D(a)---Dt(r)Jr,n). (1.2) 

We put 
A t ( a )  = D(cr)atDt(cc) = at -a* 

A(a)  = D(r)aDt(a)  = a-a .  

It is easy to see from equation (1.3) and similar equations that the operators A(a)  
and At(cr) play the role of annihilation and creation operators : 

A t ( r ) / r ,  n)  = L! n+ l/a, n+ 1) 

4%) la, n )  = x/ nla, n - 1 ) 
- 

N(a)la, n )  = A + ( ~ ) A ( z ) I ~ ,  n )  = nlr, E) .  

The mean value of the operator ata in the scs la, n) is equal to n + 1aI2 ; it is the sum 
of an incoherent term and of a coherent term. This justifies the name 'semicoherent 
state'. Perhaps, it is worthwhile to note that 

(1  3) D(a) = exp(aat -a*a) = exp(aAt(r) - r*A(a)) 

[A(Z), A"] = 1 

Figure 1 shows the effect of these operators. 

tion operator. What about this point of view for the scs? 

if it satisfies the relations 

and 
for all a, p. 

Glauber has shown that the coherent states la, 0) are the eigenvectors of the annihila- 

First, we recall that the vector Ixk)  is an eigenvector of rank k of the operator X 

( X - X ) k l X k )  = 0 

( X - X ) k - ' I X J  # 0 

x is evidently an eigenvalue of X .  

This is seen from 
Then, the scs la, n) is an eigenvector of rank n + 1 for the annihilation operator a. 

D(a)a"+ 'D+(a)Ja, n) = D(a)af l+' /n)  = 0 

D ( c + ~ + ~ D + ( c z )  = (,--a)"+' 
and 
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Figure 1. An illustration of the effect of operators a', At(a)  and D(a). For a, A(a)  and 
D - ' ( a )  = D(-a )  the arrows must be reversed. 

so 

(a-a)"+ ' la ,  n) = 0. 

Similarly 

D(a)anDt(a)la, n) = D(a)a"ln) = (n!)'l21a, 0)  

or 

(a -a)"la, n) =   la, 0)  + 0. 

In the following, this definition of la, n) will not be used because it is not unique: 
one can always add an eigenvector of rank lower than n + 1 (except, for Glauber's case 
where n = 0). 

Some scalar products will be useful in the forthcoming pages; we rapidly establish 
some of them. Here p and later q are positive integers : 

(pb, n) = (plD(a)ln) = exp($la12)(pt exp(aa+) exp(-a*a)ln). 

Because of the relation 

and of the orthogonality ( p ( q )  = 6, we get : 

which can be transformed into 
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with I = sup{O, n - p ) ,  The scs /a, p )  and la, 4) are orthogonal 

(a, pla, 4 )  = <plDt(a)D(a)ly> = (ply) = d p q .  

2.2. Completeness of the scs 

The previous results are simple generalizations of Glauber's states and a lot of them 
have been used in the literature. However, a more fundamental property has not been 
emphasized: the set of la, n)  (n given) is complete (in fact. because the basis is continuous. 
it is overcomplete, ie it is not hilbertian). 

To give a proof, we need only to demonstrate that the unit operator may be expressed 
as a suitable integral, over the whole complex plane a, of projection operators \ E ,  n)(r ,  ) I ) .  

namely : 

( 1.8) n 

d2a is the differential surface element of the complex plane. 

basis: the set of In). Therefore, we have to establish that : 
It is sufficient to show that the equality holds for the matrix elements in a complete 

I,,@, 4 )  = ; d 2 ~ ( p l ~ ,  nIq> = ( j p q  for all p ,  q. (1.9) ' i  
Using formula (1.6) and its adjoint for the scalar products, and the relation 

A d2a exp( - iai2)a'(a*)m = /!dim 
I7 

(1.10) 

equation (1.9).becomes 

with I = sup(0, n - p ) .  
Let us calculate I&, y) when p 3 n, so that I = 0. Then 

n ( p  - n + I + j )  ! 

I , J=o  i ! ( p  - n + j )  ! 

Remarking that ( p  - n + i + , j ) ! / ( p  - n + , j ) !  is a polynomial of degree i in j, and: using the 
result 

we obtain 

n for in < 17 i" ( -  l)"n! for in = n .  
1 ( -  1)'C;j" = 

J = o  

(1.1 1) 



Semicoherent states 593 

2.3. Representation of a vector, of an operator 

Using the completeness relation, it is easy to see that, for an arbitrary state 

Ix) = A J- d2ala, n)(a, nix) .  
71 

In the same way, for an operator A we have: 

A = 'J J d2a d 2 ~ 1 a ,  m)(a, ~ I A I P ,  MP, n ~ .  

In the particular (and probably more useful) case where m = n,  we let 

&,,(a, a*, 8, P*)  = exp{%ta12 + IP12)}(a, nlAIP, n).  

n2 
(1.12) 

We do not insist on this representation because the notion of a ' P  representation' seems 
more useful. 

3. Generalized P representation 

3.1. 'Diagonal' or P representation 

Klauder (1963), using the theory of continuous representation, has demonstrated that 
it is possible to write a large class of operators in a diagonal form. 

In our case, we give two processes for computing the A:(.*, a) in 

proving at the same time the existence of such a decomposition. 

3.1.1. Functional derivation. Our treatment is not mathematically rigorous because we 
are concerned in fact with distributions. However, it is not really a problem because that 
part of mathematics is well known and leads to the results we get here. 

Let K ,  = &(a*, a, /3*, P, y*, y)  be the diagonal representation for the dyadic 
la, n)(P,  nl. In fact K ,  is a functional 

la, n)(P, nl = J d2YK,lY? n)(Y, 4 .  (2.2) 

Using the relations (2.1), (2.2) and (1.12) we obtain: 

3.1.2. DifSerential deriuation. From (1.4) and (1.8) it is easy to check that: 

with 
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R,(a*, x ,  /?*, p) is the nondiagonal representation of the operator A in the coherent 

If we let a = - p  we get : 
state basis. 

(2.61 

In the case n = 0 this is Mehta’s formula (Mehta 1967): 

where Tis the ordering operator which places the derivative operators to the left of the 
multiplicative operators. Now if we let ?iY,,tj*, y )  = P,(y*, y) exp( - Iyl’), q,,(y*, y )  is a 
solution of the differential equation 

(2.9) ?{(a, + y*)”( - 3,* + y)”)cY,(y*, y) = 3&*, 7 ) .  

3.2. Evolution equations in the P representation 

Several equations in quantum physics are of the form 

pd,O(x) = [ H ( x ) ,  O ( 4 l  (2.10) 

where p is a constant, H ( x )  and O(x) are two operators depending on the continuous 
parameter x;  [ X ,  Y] = X Y  - Y X  is the commutator of X and Y. 

To solve (2.10), one usually chooses a complete basis of vectors, with which to 
calculate matrix elements which are numbers. However, (2.10) has then a complicated 
structure in terms of the matrix elements of H ( x )  and O(x) because of their product. 

We generalize here some results valid in the coherent state basis to the scs. Then 
equations (2.10) are of classical form. 

Let us write (2.10) in the ‘diagonal’ representation : 

a,o%*, ’i ; x)ly, n)(s,  nl 

(2.11) 
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(2.13) 

to obtain 

This equation is very similar to a classical equation of evolution. 

3.3. Evolution equation in the particular case n = 0 

In this case, we can produce a more direct derivation. We recall the following result of 
Ruggeri (1971). 

If B&*, y) and AE(y*, y) are the zeroth order diagonal representations for two 
operators A and B, then when AB has a diagonal representation of zeroth order, it is: 

(2.16) [AB]%*, Y) = B%*, V I  exp( - 3,Jy*)A3y*, Y) 
where the direction of the arrows shows the side where the operator acts. 

3.3.1. Diagonal representation for operators: Lemma. Let F(at, a) be any bounded 
operator then [?F(y* - J Y ,  y)] . 1 is its zeroth order diagonal representation. 
Proof. If T (or T) is the ordering operator which places the derivatives at the right 
(or the left) of the variables we can write: 

[AB]%*, Y) = [T{B%Y*, Y - J Y * W 3 Y * ?  Y) = m y * ,  Y)[A;(Y*-a',, Y)TI. (2.18) 

Since the diagonal representation for at (or a )  is y* (or y) ,  then : 

[ W t ,  a)]%*, Y) = [ m y * ,  Y - Jy*)l . 1.  
One can also use the derivation of Mehta (1967). 

(2.19) 

3.3.2. The equation of evolution. According to equation (2.18) we can write equation 
(2.10) as : 

P a,O:(Y*, Y) 
= [HOI%J*, Y)- [OH]%*, Y) 
= [ T H 3 y * ,  Y -4*)103Y*, Y ) - - 0 3 Y * ,  Y)[H%* -ay7 Y m .  

Then 

PLx03Y*,Y;x)  = [ T { H ~ ( Y * , Y - J , * ; x ) - H ~ ( Y * - J , , Y ; x ) } l O ~ ( Y * , Y ; x ) .  (2.20) 

This result gives a straightforward method for writing the equation of evolution in the 
case n = 0;  it is simpler than the result of Crosignani et a1 (1971). 
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4. Conclusion 

We have proved that the set {exp(aat - sr*a)ln) = la. n), n given, z complex} is complete. 
Using the closure relation thus obtained, we have shown that it is possible to give a 
diagonal’ representation of operators. This remarkable property which generalizes 

that of Glauber’s coherent states has then been used to give an expression for general 
evolution equations of quantum mechanics. 

However, the more complicated analytic expression for the equivalent operators 
does not seem, up to now, to be very useful, particularly in areas where coherent states 
give a suitable description. 
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